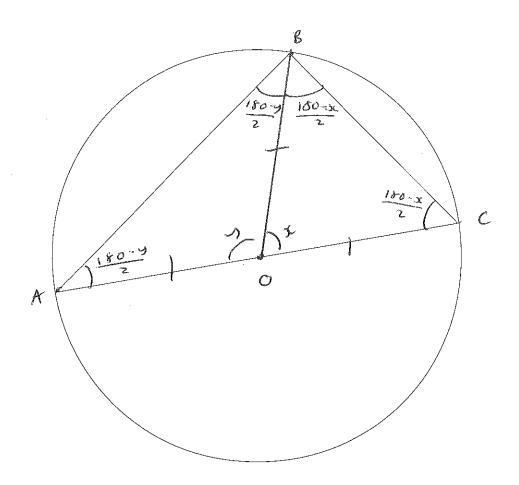


Prove that the angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference

Let
$$BOC = X$$


AOB = Y

:. $AOC = 360 - 36 - y$

Angle $S = CBO \text{ and } BCO = \frac{180 - x}{2}$ (angles in isosceles triangle)

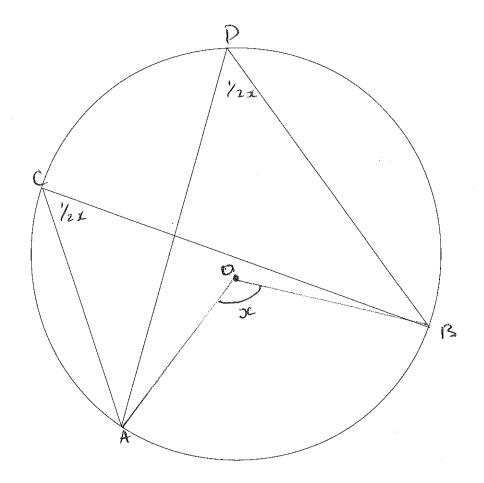
Angle $S = CBO \text{ and } ACSO = \frac{180 - x}{2}$

Angle $ABC = \frac{180 - y}{2} + \frac{180 - x}{2}$
 $40 - \frac{1}{2}y + 40 - \frac{1}{2}x$
 $180 - \frac{1}{2}x - \frac{1}{2}y$
 $360 - x - y = 2(180 - \frac{1}{2}x - \frac{1}{2}y)$. (4)

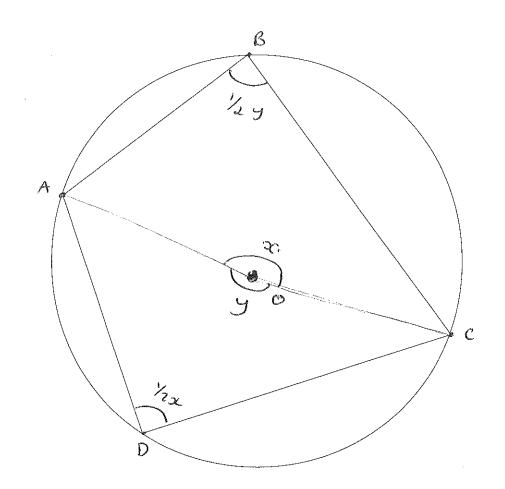
Prove the angle subtended at the circumference by a semicircle is a right angle

Let
$$AOB = 9$$
 and $BOC = x$

$$DC + y = 180^{\circ}$$


Angles BE : ABO and $BAO = \frac{180 - y}{2}$ (Angles in isosceles)

Angles BCO and $CBO = \frac{180 - x}{2}$ (Friendle)


$$ABC = \frac{180 - y}{2} + \frac{180 - x}{2}$$

$$= \frac{90 - \frac{1}{2}y + 90 - \frac{1}{2}x}{2}$$

$$= \frac{180 - \frac{1}{2}y + \frac{1}{2}x}{2}$$
(As $x + y = 180$ $\frac{1}{2}x + \frac{1}{2}y = 90$)
$$= 180 - (\frac{1}{2}x + \frac{1}{2}y)$$
(4)

Prove that angles in the same segment are equal

Prove that opposite angles of a cyclic quadrilateral sum to 180°

Let angle
$$AOC$$
 (Minor) = x

Let angle AOC (Major) = y

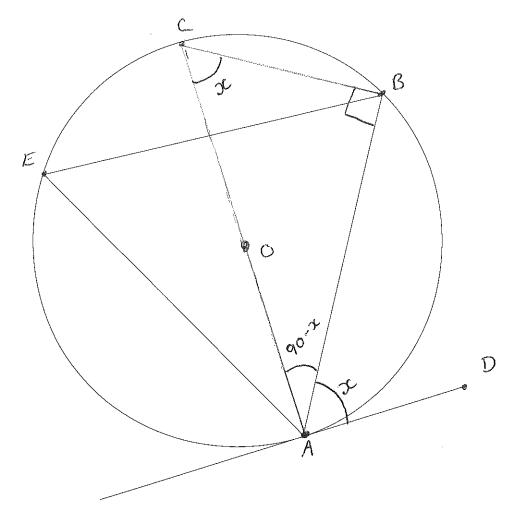
Angle $x+y=360^{\circ}$ (angles at a point)

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half


 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

 $AOC = 1/2 \times (Angle at c.rcombenese = is half

AS = 1/2 \times 1$$$$$$$$

Prove the alternate segment theorem